Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
2023 Australasian Computer Science Week, ACSW 2023 ; : 183-189, 2023.
Article in English | Scopus | ID: covidwho-2265583

ABSTRACT

Bioinformatics has numerous approaches for evaluating the similarities between RNA-seq data for disease classification. Processing RNA-sequencing (RNA-seq) data using clustering or classification approach is extremely challenging, although analysis of ribonucleic acid (RNA-Seq) helps understand differentially expressed genes and classify the patient in a risk-free method. In this study, we present a hybrid end-to-end pipeline for analyzing, processing, and classifying the RNA-Seq data with a major focus on the covid-19 data set. The pipeline has been developed in three phases initially the raw data is normalized. Then the normalized data is pushed to a colonization algorithm to remove the noise data. The optimized data set is passed to a Deep Learning (DL) classifier. Further, a comparative analysis is performed with state of art methods discussed in the literature. The results prove that our proposed hybrid pipeline achieved the best accuracy over other methods. Gene set enrichment analysis was also performed to analyze the genes that are informative towards COVID-19 identification. © 2023 ACM.

2.
Comput Struct Biotechnol J ; 21: 1403-1413, 2023.
Article in English | MEDLINE | ID: covidwho-2228991

ABSTRACT

SARS-CoV-2 is the causative agent of COVID-19, which has greatly affected human health since it first emerged. Defining the human factors and biomarkers that differentiate severe SARS-CoV-2 infection from mild infection has become of increasing interest to clinicians. To help address this need, we retrieved 269 public RNA-seq human transcriptome samples from GEO that had qualitative disease severity metadata. We then subjected these samples to a robust RNA-seq data processing workflow to calculate gene expression in PBMCs, whole blood, and leukocytes, as well as to predict transcriptional biomarkers in PBMCs and leukocytes. This process involved using Salmon for read mapping, edgeR to calculate significant differential expression levels, and gene ontology enrichment using Camera. We then performed a random forest machine learning analysis on the read counts data to identify genes that best classified samples based on the COVID-19 severity phenotype. This approach produced a ranked list of leukocyte genes based on their Gini values that includes TGFBI, TTYH2, and CD4, which are associated with both the immune response and inflammation. Our results show that these three genes can potentially classify samples with severe COVID-19 with accuracy of ∼88% and an area under the receiver operating characteristic curve of 92.6--indicating acceptable specificity and sensitivity. We expect that our findings can help contribute to the development of improved diagnostics that may aid in identifying severe COVID-19 cases, guide clinical treatment, and improve mortality rates.

3.
Front Immunol ; 13: 975848, 2022.
Article in English | MEDLINE | ID: covidwho-2142004

ABSTRACT

Corona Virus Disease 2019 (COVID-19), an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread rapidly worldwide, resulting in a pandemic with a high mortality rate. In clinical practice, we have noted that many critically ill or critically ill patients with COVID-19 present with typical sepsis-related clinical manifestations, including multiple organ dysfunction syndrome, coagulopathy, and septic shock. In addition, it has been demonstrated that severe COVID-19 has some pathological similarities with sepsis, such as cytokine storm, hypercoagulable state after blood balance is disrupted and neutrophil dysfunction. Considering the parallels between COVID-19 and non-SARS-CoV-2 induced sepsis (hereafter referred to as sepsis), the aim of this study was to analyze the underlying molecular mechanisms between these two diseases by bioinformatics and a systems biology approach, providing new insights into the pathogenesis of COVID-19 and the development of new treatments. Specifically, the gene expression profiles of COVID-19 and sepsis patients were obtained from the Gene Expression Omnibus (GEO) database and compared to extract common differentially expressed genes (DEGs). Subsequently, common DEGs were used to investigate the genetic links between COVID-19 and sepsis. Based on enrichment analysis of common DEGs, many pathways closely related to inflammatory response were observed, such as Cytokine-cytokine receptor interaction pathway and NF-kappa B signaling pathway. In addition, protein-protein interaction networks and gene regulatory networks of common DEGs were constructed, and the analysis results showed that ITGAM may be a potential key biomarker base on regulatory analysis. Furthermore, a disease diagnostic model and risk prediction nomogram for COVID-19 were constructed using machine learning methods. Finally, potential therapeutic agents, including progesterone and emetine, were screened through drug-protein interaction networks and molecular docking simulations. We hope to provide new strategies for future research and treatment related to COVID-19 by elucidating the pathogenesis and genetic mechanisms between COVID-19 and sepsis.


Subject(s)
COVID-19 , Sepsis , Biomarkers , Computational Biology/methods , Critical Illness , Cytokines/genetics , Emetine , Gene Expression Profiling/methods , Humans , Molecular Docking Simulation , NF-kappa B/genetics , Progesterone , Receptors, Cytokine/genetics , SARS-CoV-2 , Sepsis/genetics , Sepsis/metabolism
4.
BMC Infect Dis ; 21(1): 852, 2021 Aug 21.
Article in English | MEDLINE | ID: covidwho-1363547

ABSTRACT

BACKGROUND AND AIMS: Acute respiratory distress syndrome (ARDS) or acute lung injury (ALI) is one of the most common acute thoracopathy with complicated pathogenesis in ICU. The study is to explore the differentially expressed genes (DEGs) in the lung tissue and underlying altering mechanisms in ARDS. METHODS: Gene expression profiles of GSE2411 and GSE130936 were available from GEO database, both of them included in GPL339. Then, an integrated analysis of these genes was performed, including gene ontology (GO) and KEGG pathway enrichment analysis in DAVID database, protein-protein interaction (PPI) network construction evaluated by the online database STRING, Transcription Factors (TFs) forecasting based on the Cytoscape plugin iRegulon, and their expression in varied organs in The Human Protein Atlas. RESULTS: A total of 39 differential expressed genes were screened from the two datasets, including 39 up-regulated genes and 0 down-regulated genes. The up-regulated genes were mainly enriched in the biological process, such as immune system process, innate immune response, inflammatory response, and also involved in some signal pathways, including cytokine-cytokine receptor interaction, Salmonella infection, Legionellosis, Chemokine, and Toll-like receptor signal pathway with an integrated analysis. GBP2, IFIT2 and IFIT3 were identified as hub genes in the lung by PPI network analysis with MCODE plug-in, as well as GO and KEGG re-enrichment. All of the three hub genes were regulated by the predictive common TFs, including STAT1, E2F1, IRF1, IRF2, and IRF9. CONCLUSIONS: This study implied that hub gene GBP2, IFIT2 and IFIT3, which might be regulated by STAT1, E2F1, IRF1, IRF2, or IRF9, played significant roles in ARDS. They could be potential diagnostic or therapeutic targets for ARDS patients.


Subject(s)
Lipopolysaccharides , Respiratory Distress Syndrome , Computational Biology , Gene Expression Profiling , Humans , Protein Interaction Maps , Respiratory Distress Syndrome/genetics
5.
Front Genet ; 12: 755222, 2021.
Article in English | MEDLINE | ID: covidwho-1760232

ABSTRACT

Background: To develop anti-viral drugs and vaccines, it is crucial to understand the molecular basis and pathology of COVID-19. An increase in research output is required to generate data and results at a faster rate, therefore bioinformatics plays a crucial role in COVID-19 research. There is an abundance of transcriptomic data from studies carried out on COVID-19, however, their use is limited by the confounding factors pertaining to each study. The reanalysis of all these datasets in a unified approach should help in understanding the molecular basis of COVID-19. This should allow for the identification of COVID-19 biomarkers expressed in patients and the presence of markers specific to disease severity and condition. Aim: In this study, we aim to use the multiple publicly available transcriptomic datasets retrieved from the Gene Expression Omnibus (GEO) database to identify consistently differential expressed genes in different tissues and clinical settings. Materials and Methods: A list of datasets was generated from NCBI's GEO using the GEOmetadb package through R software. Search keywords included SARS-COV-2 and COVID-19. Datasets in human tissues containing more than ten samples were selected for this study. Differentially expressed genes (DEGs) in each dataset were identified. Then the common DEGs between different datasets, conditions, tissues and clinical settings were shortlisted. Results: Using a unified approach, we were able to identify common DEGs based on the disease conditions, samples source and clinical settings. For each indication, a different set of genes have been identified, revealing that a multitude of factors play a role in the level of gene expression. Conclusion: Unified reanalysis of publically available transcriptomic data showed promising potential in identifying core targets that can explain the molecular pathology and be used as biomarkers for COVID-19.

6.
Gene Rep ; 27: 101597, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1747987

ABSTRACT

The coronavirus disease (COVID-19) pandemic caused by SARS-CoV-2 is ongoing. Individuals with sarcoidosis tend to develop severe COVID-19; however, the underlying pathological mechanisms remain elusive. To determine common transcriptional signatures and pathways between sarcoidosis and COVID-19, we investigated the whole-genome transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with COVID-19 and sarcoidosis and conducted bioinformatic analysis, including gene ontology and pathway enrichment, protein-protein interaction (PPI) network, and gene regulatory network (GRN) construction. We identified 33 abnormally expressed genes that were common between COVID-19 and sarcoidosis. Functional enrichment analysis showed that these differentially expressed genes were associated with cytokine production involved in the immune response and T cell cytokine production. We identified several hub genes from the PPI network encoded by the common genes. These hub genes have high diagnostic potential for COVID-19 and sarcoidosis and can be potential biomarkers. Moreover, GRN analysis identified important microRNAs and transcription factors that regulate the common genes. This study provides a novel characterization of the transcriptional signatures and biological processes commonly dysregulated in sarcoidosis and COVID-19 and identified several critical regulators and biomarkers. This study highlights a potential pathological association between COVID-19 and sarcoidosis, establishing a theoretical basis for future clinical trials.

7.
Int J Mol Sci ; 23(5)2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1742484

ABSTRACT

Although half of hypertensive patients have hypertensive parents, known hypertension-related human loci identified by genome-wide analysis explain only 3% of hypertension heredity. Therefore, mainstream transcriptome profiling of hypertensive subjects addresses differentially expressed genes (DEGs) specific to gender, age, and comorbidities in accordance with predictive preventive personalized participatory medicine treating patients according to their symptoms, individual lifestyle, and genetic background. Within this mainstream paradigm, here, we determined whether, among the known hypertension-related DEGs that we could find, there is any genome-wide hypertension theranostic molecular marker applicable to everyone, everywhere, anytime. Therefore, we sequenced the hippocampal transcriptome of tame and aggressive rats, corresponding to low and high stress reactivity, an increase of which raises hypertensive risk; we identified stress-reactivity-related rat DEGs and compared them with their known homologous hypertension-related animal DEGs. This yielded significant correlations between stress reactivity-related and hypertension-related fold changes (log2 values) of these DEG homologs. We found principal components, PC1 and PC2, corresponding to a half-difference and half-sum of these log2 values. Using the DEGs of hypertensive versus normotensive patients (as the control), we verified the correlations and principal components. This analysis highlighted downregulation of ß-protocadherins and hemoglobin as whole-genome hypertension theranostic molecular markers associated with a wide vascular inner diameter and low blood viscosity, respectively.


Subject(s)
Hypertension , Animals , Blood Pressure/genetics , Gene Expression Profiling , Humans , Hypertension/metabolism , Rats , Transcriptome
8.
Front Immunol ; 13: 798538, 2022.
Article in English | MEDLINE | ID: covidwho-1699559

ABSTRACT

Existing evidence demonstrates that coronavirus disease 2019 (COVID-19) leads to psychiatric illness, despite its main clinical manifestations affecting the respiratory system. People with mental disorders are more susceptible to COVID-19 than individuals without coexisting mental health disorders, with significantly higher rates of severe illness and mortality in this population. The incidence of new psychiatric diagnoses after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also remarkably high. SARS-CoV-2 has been reported to use angiotensin-converting enzyme-2 (ACE2) as a receptor for infecting susceptible cells and is expressed in various tissues, including brain tissue. Thus, there is an urgent need to investigate the mechanism linking psychiatric disorders to COVID-19. Using a data set of peripheral blood cells from patients with COVID-19, we compared this to data sets of whole blood collected from patients with psychiatric disorders and used bioinformatics and systems biology approaches to identify genetic links. We found a large number of overlapping immune-related genes between patients infected with SARS-CoV-2 and differentially expressed genes of bipolar disorder (BD), schizophrenia (SZ), and late-onset major depressive disorder (LOD). Many pathways closely related to inflammatory responses, such as MAPK, PPAR, and TGF-ß signaling pathways, were observed by enrichment analysis of common differentially expressed genes (DEGs). We also performed a comprehensive analysis of protein-protein interaction network and gene regulation networks. Chemical-protein interaction networks and drug prediction were used to screen potential pharmacologic therapies. We hope that by elucidating the relationship between the pathogenetic processes and genetic mechanisms of infection with SARS-CoV-2 with psychiatric disorders, it will lead to innovative strategies for future research and treatment of psychiatric disorders linked to COVID-19.


Subject(s)
Bipolar Disorder/genetics , COVID-19/pathology , Depressive Disorder, Major/genetics , Mental Disorders/epidemiology , Protein Interaction Maps/genetics , Schizophrenia/genetics , COVID-19/epidemiology , Comorbidity , Gene Expression Profiling , Humans , Mental Disorders/genetics , SARS-CoV-2/immunology , Severity of Illness Index
9.
Brief Bioinform ; 22(2): 1387-1401, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343660

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected individuals that have hypertension or cardiovascular comorbidities have an elevated risk of serious coronavirus disease 2019 (COVID-19) disease and high rates of mortality but how COVID-$19$ and cardiovascular diseases interact are unclear. We therefore sought to identify novel mechanisms of interaction by identifying genes with altered expression in SARS-CoV-$2$ infection that are relevant to the pathogenesis of cardiovascular disease and hypertension. Some recent research shows the SARS-CoV-$2$ uses the angiotensin converting enzyme-$2$ (ACE-$2$) as a receptor to infect human susceptible cells. The ACE2 gene is expressed in many human tissues, including intestine, testis, kidneys, heart and lungs. ACE2 usually converts Angiotensin I in the renin-angiotensin-aldosterone system to Angiotensin II, which affects blood pressure levels. ACE inhibitors prescribed for cardiovascular disease and hypertension may increase the levels of ACE-$2$, although there are claims that such medications actually reduce lung injury caused by COVID-$19$. We employed bioinformatics and systematic approaches to identify such genetic links, using messenger RNA data peripheral blood cells from COVID-$19$ patients and compared them with blood samples from patients with either chronic heart failure disease or hypertensive diseases. We have also considered the immune response genes with elevated expression in COVID-$19$ to those active in cardiovascular diseases and hypertension. Differentially expressed genes (DEGs) common to COVID-$19$ and chronic heart failure, and common to COVID-$19$ and hypertension, were identified; the involvement of these common genes in the signalling pathways and ontologies studied. COVID-$19$ does not share a large number of differentially expressed genes with the conditions under consideration. However, those that were identified included genes playing roles in T cell functions, toll-like receptor pathways, cytokines, chemokines, cell stress, type 2 diabetes and gastric cancer. We also identified protein-protein interactions, gene regulatory networks and suggested drug and chemical compound interactions using the differentially expressed genes. The result of this study may help in identifying significant targets of treatment that can combat the ongoing pandemic due to SARS-CoV-$2$ infection.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/complications , Computational Biology , Hypertension/complications , Systems Biology , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification
10.
Front Cardiovasc Med ; 7: 582399, 2020.
Article in English | MEDLINE | ID: covidwho-948033

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is a viral respiratory illness caused by the novel coronavirus SARS-CoV-2. The presence of the pre-existing cardiac disease is associated with an increased likelihood of severe clinical course and mortality in patients with COVID-19. Besides, current evidence indicates that a significant number of patients with COVID-19 also exhibit cardiovascular involvement even in the absence of known cardiac risk factors. Therefore, there is a need to understand the underlying mechanisms and genetic predispositions that explain cardiovascular involvement in COVID-19. Objectives: In silico analysis of publicly available datasets to decipher the molecular basis, potential pathways, and the role of the endothelium in the pathogenesis of cardiac and vascular injuries in COVID-19. Materials and Methods: Consistent significant differentially expressed genes (DEGs) shared by endothelium and peripheral immune cells were identified in five microarray transcriptomic profiling datasets in patients with venous thromboembolism "VTE," acute coronary syndrome, heart failure and/or cardiogenic shock (main cardiovascular injuries related to COVID-19) compared to healthy controls. The identified genes were further examined in the publicly available transcriptomic dataset for cell/tissue specificity in lung tissue, in different ethnicities and in SARS-CoV-2 infected vs. mock-infected lung tissues and cardiomyocytes. Results: We identified 36 DEGs in blood and endothelium known to play key roles in endothelium and vascular biology, regulation of cellular response to stress as well as endothelial cell migration. Some of these genes were upregulated significantly in SARS-CoV-2 infected lung tissues. On the other hand, some genes with cardioprotective functions were downregulated in SARS-CoV-2 infected cardiomyocytes. Conclusion: In conclusion, our findings from the analysis of publicly available transcriptomic datasets identified shared core genes pertinent to cardiac and vascular-related injuries and their probable role in genetic susceptibility to cardiovascular injury in patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL